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Abstract Based on the concept of general domination structures, this paper presents an
approach to model variable preferences for multicriteria optimization and decision making
problems. The preference assumptions for using a constant convex cone are given, and, in
remedy of some immanent model limitations, a new set of assumptions is presented. The
underlying preference model is derived as a variable domination structure that is defined
by a collection of ideal-symmetric convex cones. Necessary and sufficient conditions for
nondominance are established, and the problem of finding corresponding nondominated
solutions is addressed and solved on examples.

Keywords Multicriteria optimization · Multicriteria decision making · Preference models ·
Variable domination structures · Convex cones

1 Introduction

In both theory and practical applications of multicriteria optimization and decision making,
the subjective nature of making decisions necessitates the formulation of some simplified yet
realistic preference model. The notion and modeling of preferences also play an important
role in many other fields such as economy, sociology, psychology, or mathematical pro-
gramming, and is extensively researched during the past century (for a comprehensive recent
survey, see Öztürk et al. 2005).

First described in the economic literature, the probably still most commonly used
preference model in multicriteria optimization and decision making is based on the Edge-
worth-Pareto Principle (Edgeworth 1881; Pareto 1896), also known as the concept of Pareto
dominance. One of its main characteristics is that, in contrast to problems with only one
criterion, in general there does not exist a unique optimal solution as best overall outcome,
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but a solution set of Pareto nondominated points. Using the concept of cones, this Pareto
concept can be generalized to other domination cones (Yu 1973, 1974), domination struc-
tures (Yu and Leitmann 1974; Yu 1975; Bergstresser et al. 1976; Yu 1985) and domination sets
(Weidner 1985, 2003). Other authors compare these new concepts with Pareto dominance
(Lin 1976), extend the notions of proper efficiency from traditional multiobjective program-
ming (Kuhn and Tucker 1951; Geoffrion 1968) to cone extreme points (Borwein 1977;
Benson 1979, 1983; Coladas Uría 1981; Henig 1982, 1990), and propose generalizations of
domination structures for more abstract spaces (Chew 1979). Primarily focusing on closed
and convex domination cones, several other properties of the nondominated set are investi-
gated, including existence (Corley 1980), connectedness (Naccache 1978), stability (Tanino
and Sawaragi 1978, 1980), duality (Tanino and Sawaragi 1979; Corley 1981; Hsia and Lee
1988), and optimality conditions for polyhedral cones (Tamura and Miura 1979; Corley 1985;
Fujita 1996).

Although some early papers also anticipate the use of domination structures in multicrite-
ria games (Bergstresser and Yu 1977) and decision making (Takeda and Nishida 1980; Tanino
et al. 1980), Ramesh et al. (1988, 1989) finally draw the attention to preference modeling
using domination structures and develop a methodology for representing a decision-maker’s
preferences using convex and polyhedral cones. In the following decade, however, the main
focus switches from using domination to rough and fuzzy sets (Słowiński 1998, Fodor et al.
2000), before Hunt and Wiecek (2003) and Hunt (2004) follow Noghin (1997) and again pro-
pose polyhedral cones to model preferences of the decision maker. Most recently, Wu (2004)
combines the two approaches of fuzzy sets and domination cones, and Yun et al. (2004) sug-
gest a generalized model that incorporates various preference structures of decision makers
in the context of data envelopment analysis.

In all reviewed papers that use the concept of domination structures for preference mod-
eling, the chosen model is described by a constant domination set, most often by a constant
convex cone. The only current papers explicitly addressing variable domination structures
are found in the context of nonlinear scalarization for multicriteria decision making prob-
lems and variational inequalities (Chen and Yang 2002; Chen et al. 2005), but do not discuss
their possible roles in preference modeling. Therefore, the objective of this paper is first to
highlight some shortcomings of the current models and second to propose a new preference
model in remedy of the recognized limitations.

The remaining paper is organized as follows. In Sect. 2, some common terminology and
basic definitions are introduced. Section 3 formulates a set of preference assumptions, that
are subsequently used to derive the corresponding preference models, and introduces the
concept of ideal-symmetric convex cones to define the variable domination structure studied
in this paper. The nondominated set with respect to this new model is characterized in Sect. 4,
necessary and sufficient conditions for nondominance are derived, and the problem of finding
corresponding nondominated solutions is addressed. In Sect. 5, selected results are illustrated
on several examples, and Sect. 6 summarizes and finally concludes the paper.

2 Terminology and definitions

Let R
m be a Euclidean space equipped with the Euclidean norm, and let the nonnegative

orthant of R
m be denoted by R

m≥ = {y ∈ R
m : y ≥ 0}. A nonempty set C ⊂ R

m is
called a cone if c ∈ C ⇒ λc ∈ C for all λ > 0, and it may or may not contain the
origin 0 ∈ R

m . A cone C ⊂ R
m is said to be convex if c1, c2 ∈ C ⇒ c1 + c2 ∈ C ,

and pointed if
∑k

i=1 ci = 0 ⇒ ci = 0 for all i = 1, . . . , k, where the ci ∈ C are any
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k elements of C . If C is convex, then C is pointed if and only if C ∩ −C ⊂ {0}. The
dual cone of C is defined by C+ = {n ∈ R

m : 〈n, c〉 ≥ 0 for all c ∈ C} with interior
int C+ = {n ∈ R

m : 〈n, c〉 > 0 for all c ∈ C\{0}}, where 〈n, c〉 = ∑m
i=1 ni ci , and C is called

self-dual if C = C+. Finally, a set S ⊂ R
m is said to be C-compact if (s−C)∩S is compact for

all s ∈ S. It is C-convex if S+C is a convex set, so s1, s2 ∈ S+C ⇒ λs1+(1−λ)s2 ∈ S+C
for all 0 ≤ λ ≤ 1, and C-concave if it is −C-convex, or if S − C is convex.

Remark 1 The set R
m≥ is a convex, pointed, and self-dual cone that contains the origin.

Now let Y ⊂ R
m be a nonempty set of outcomes subject to minimization. For two points

y1, y2 ∈ R
m , the notation y1 ≺ y2 is used to denote that y1 is preferred to y2, or equivalently,

that y1 dominates y2. Accordingly, y1
⊀ y2 is used to denote that y1 is not preferred to, or

equivalently, that y2 is not dominated by y1.

Definition 1 Let Y ⊂ R
m be nonempty. The multicriteria optimization (MCO) and the

multicriteria decision making (MCDM) problems are defined as

MCO: Find y◦ ∈ Y such that y ⊀ y◦ for all y ∈ Y \ {y◦}
MCDM: Find y∗ ∈ Y such that y∗ ≺ y for all y ∈ Y \ {y∗}

If an outcome y◦ ∈ Y is a solution to MCO, then there does not exist another outcome that is
preferred to, or dominates y◦. Therefore, y◦ is also called a nondominated outcome for MCO.
If an outcome y∗ ∈ Y is a solution to MCDM, then y∗ is preferred to all other outcomes.
Therefore, y∗ is also called the preferred outcome for MCDM.

Remark 2 It follows immediately that the preferred outcome y∗∈Y for MCDM is also
nondominated for MCO, but not vice versa.

Definition 2 Let y ∈ Y ⊂ R
m and y′ ∈ R

m . If y′ ≺ y, then the vector d = y − y′ ∈ R
m is

called a dominated direction at y, and the set of all dominated directions at y is denoted by
D(y) = {d = y − y′ ∈ R

m : y′ ≺ y}.
Equivalently, a direction d ∈ R

m is dominated at y ∈ Y if and only if deviation d from y
is preferred to the original y, or y − d ≺ y. Although d = 0, in principle, is not a direction
and, in particular, y ⊀ y, due to technical reasons d = 0 ∈ D(y) is permissible as special
case.

Remark 3 If D(y) = D for all y ∈ Y , and if y + d ∈ Y , then D(y) = D(y + d) and, in
particular, y − d ≺ y is equivalent to y ≺ y + d , which coincides with the notion of dom-
inance adopted by Yu (1974). In general, however, if D(y) 
= D(y + d), then it is possible
that y − d ≺ y, but y ⊀ y + d , in which case the two notions are different.

If the sets of dominated directions vary for different outcomes, then the collection D =
{D(y) : y ∈ Y } is also called a variable domination structure for Y . If D(y) = D for all
y ∈ Y , then D = D is written instead of D = {D}, and the domination structure is said to be
constant.

Definition 3 Let Y ⊂ R
m be nonempty, and D = {D(y) : y ∈ Y } be a domination structure

for Y . An outcome y◦ ∈ Y is said to be nondominated with respect to D if there does not
exist a dominated direction d ∈ D(y◦) such that y◦ − d ∈ Y \ {y◦}, and the set of all
nondominated outcomes of Y with respect to D is denoted by

N(Y, D) = {y◦ ∈ Y : (y◦ − D(y◦)) ∩ Y ⊂ {y◦}}
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If d ∈ D(y) is a dominated direction, then the vector c = −d is also called a preferred
direction, and the set of all preferred directions at y is denoted by C(y) = −D(y).

Remark 4 It follows that, equivalent to Definition 3, an outcome y◦ ∈ Y is nondominated
with respect to D if there does not exist a preferred direction c ∈ C(y) such that y◦ + c ∈
Y \ {y◦}. From Definition 1, then y◦ ∈ Y is, in particular, a solution for MCO.

Based on Remark 2, however, this does not imply that the solution y◦ for MCO is also
the preferred outcome for MCDM, because the domination structure D, in general, does not
capture all the preferences by the decision maker that are needed to obtain a unique nondom-
inated solution for MCO. Only in the ideal case, the nondominated set for MCO reduces to
a singleton and then also characterizes the preferred outcome for MCDM.

Definition 4 Let Y ⊂ R
m be nonempty. The point z = (z1, . . . , zm) ∈ R

m with zi = inf{yi :
y ∈ Y } for all i = 1, . . . , m is called the ideal point of Y . An outcome y ∈ Y with yi = zi

for some index i is also called partially ideal.

The ideal point as defined in Definition 4 may, in general, be finite or infinite. In this paper,
however, it is assumed that the ideal point is finite.

Remark 5 If Y ⊂ R
m is R

m≥-compact, then the infimum in Definition 4 can be replaced by
the minimum and z ∈ R

m is, in particular, finite.

Clearly, if z ∈ Y , then N(Y, D) = {z} and z is both a unique nondominated outcome for
MCO and, thus, also preferred for MCDM. Since, in this case, both MCO and MCDM reduce
to the computation of z, in this paper it is assumed that z /∈ Y .

Notation 1 Throughout the remaining paper, the notation ȳ = y − z is used to denote the
direction from the ideal point z ∈ R

m to any y ∈ Y .

Since the set Y is subject to minimization, it will be assumed that all outcomes are dom-
inated by the ideal point z, so ȳ = y − z ∈ D(y) for all y ∈ Y . In particular, Definition 4
implies that ȳ ≥ 0 for all y ∈ Y , and ȳ > 0 if y is not partially ideal. The special case in
which exactly the nonnegative directions d ≥ 0 belong to the set of dominated directions
defines the classical concept of Pareto dominance (Pareto 1896).

Definition 5 Let Y ⊂ R
m be nonempty. An outcome y ∈ N(Y, R

m≥) is called a Pareto
outcome, and N(Y, R

m≥) is called the Pareto set of Y . The cone R
m≥ is also called the

m-dimensional Pareto cone.

3 Preference and model assumptions

This section first presents two preference assumptions for a constant preference structure
D ⊂ R

m .

Assumption 1 (Global Preferences) Let y1, y2, y3, y4 ∈ R
m and λ > 0.

(i) Multiplicativity: If y1 ≺ y2, then λy1 ≺ λy2.
(ii) Additivity: If y1 ≺ y3 and y2 ≺ y4, then y1 + y2 ≺ y3 + y4.

Remark 6 In particular, if y1 = y2 and y3 = y4, then Assumption 1 (ii) reduces to Assump-
tion 1 (i) withλ = 2. Moreover, if yi ∈ R

m for i = 1, . . . , 2k and y j ≺ y j+k for j = 1, . . . , k,
then Assumption 1 (ii) implies that also

∑k
j=1 y j ≺ ∑k

j=1 y j+k .
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In Assumption 1, multiplicativity can be assumed based on the argument that preferences
should not depend on criterion scaling, while additivity holds under the assumption that
separate preferences remain valid upon simultaneous consideration and combination.

Assumption 2 (Monotonicity) Let y ∈ R
m and ei ∈ R

m be the i th unit vector. Then
y − ei ≺ y.

The following two results derive that the set of dominated directions for a preference
model satisfying Assumptions 1 and 2 is described by a constant convex cone that contains
the Pareto cone.

Proposition 1 Assumption 1 implies that the set of dominated directions D = {d = y2−y1 ∈
R

m : y1 ≺ y2} is a convex cone.

Proof To show that the set D is a cone, let d ∈ D and λ > 0. Then there exist y1, y2 ∈ R
m

so that d = y2 − y1 and y1 ≺ y2, and Assumption 1 (i) implies that also λy1 ≺ λy2 and,
thus, λy2 − λy1 = λ(y2 − y1) = λd ∈ D, showing that D is a cone.

To show that the cone D is convex, let d1, d2 ∈ D. Then there exist y1, y2, y3, y4 ∈ R
m

so that d1 = y3 − y1, d2 = y4 − y2 and y1 ≺ y3, y2 ≺ y4, and Assumption 1 (ii) implies that
also y1+y2 ≺ y3+y4 and, thus, y3+y4−(y1+y2) = (y3−y1)+(y4−y2) = d1+d2 ∈ D,
showing that the cone D is convex. ��

The second result uses that, if D ⊂ R
m is a convex cone, then D ∪ {0} is also a convex

cone.

Proposition 2 Together with Assumption 1, Assumption 2 implies that the convex cone D =
{d = y2 − y1 ∈ R

m : y1 ≺ y2} ∪ {0} contains the Pareto cone, R
m≥ ⊂ D.

Proof To show that the convex cone D contains the Pareto cone, let d ∈ R
m≥, so d =

∑m
i=1 di ei = (d1, . . . , dm) ≥ 0. From Assumption 2, y−ei ≺ y and, thus, d = y−(y−ei ) =

ei ∈ D. If di = 0, then di ei = 0 ∈ D, otherwise di > 0 and di ei ∈ D also, because D is
a cone. Convexity of D then implies that d = ∑m

i=1 di ei ∈ D, showing that D contains the
Pareto cone, R

m≥ ⊂ D. ��
Although most preference models that define nondominated solutions using the concept of

a domination structure are described by a constant convex cone, there exist some immanent
model limitations and shortcomings.

Example 1 Let Y = {y ∈ R
2 : y1 + y2 ≥ 1, y1 ≥ 0, y2 ≥ 0}, and D ⊂ R

2 be a constant
convex cone that contains the Pareto cone, R

2≥ ⊂ D. Note that the ideal point z = (0, 0) /∈ Y ,
and that all outcomes y = (y1, y2) ∈ Y with y1 ≥ 1 and y2 = 0, or y1 = 0 and y2 ≥ 1, are
partially ideal. In particular, denote z1 = (1, 0), z2 = (0, 1), and let d1 = z2 − z1 = (−1, 1)

and d2 = z1 − z2 = (1,−1).

(i) If d1, d2 ∈ D or, equivalently, D = {y ∈ R
2 : y1 + y2 ≥ 0}, then N(Y, D) = ∅.

(ii) If d1 ∈ D and d2 /∈ D, or d1 /∈ D and d2 ∈ D, then N(Y, D) = {z1} or N(Y, D) =
{z2}, respectively.

(iii) If d1, d2 /∈ D or, equivalently, D ⊂ int{y ∈ R
2 : y1 + y2 ≥ 0}, then N(Y, D) = {y ∈

Y : y1 + y2 = 1}.
Hence, using a constant convex cone D that contains the Pareto cone, the nondominated set of
Y is either (i) empty, (ii) a singleton, or (iii) the complete line segment {y ∈ R

2 : y1 + y2 = 1,
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y1 ≥ 0, y2 ≥ 0}. In particular, it is not possible to define a preference model that excludes the
two extreme points z1, z2 while maintaining a set of nondominated outcomes in the middle
region of the Pareto set, ∅ 
= N(Y, D) ⊂ {y ∈ R

2 : y1 + y2 = 1, y1 > 0, y2 > 0}, for further
consideration by a decision maker.

To remove the model limitation illustrated by Example 1, the global preference assump-
tions in Assumption 1 need to be modified to eventually allow for the definition of a variable
domination structure D = {D(y) : y ∈ Y }, based on a set of corresponding local preferences.

Assumption 3 (Local Preferences) Let Y ⊂ R
m be nonempty, y ∈ Y, d, d1, d2 ∈ R

m , and
λ > 0.

(i) Multiplicativity: If y − d ≺ y, then y − λd ≺ y.
(ii) Additivity: If y − d1 ≺ y and y − d2 ≺ y, then y − (d1 + d2) ≺ y.

Proposition 3 Let Y ⊂ R
m be nonempty, y ∈ Y , and D(y) = {d ∈ R

m : y − d ≺ y} ∪ {0}.
Assumption 3 implies that D(y) is a convex cone and, together with Assumption 2, that D(y)

contains the Pareto cone, R
m≥ ⊂ D(y).

Proof To show that the set D(y) is a cone, let d ∈ D(y) and λ > 0. If d = 0, then
λd = 0 ∈ D(y), otherwise y − d ≺ y and Assumption 3 (i) implies that also y − λd ≺ y
and, thus, λd ∈ D(y), showing that D(y) is a cone.

To show that the cone D(y) is convex, let d1, d2 ∈ D(y). If d1 = 0 or d2 = 0, then
d1 + d2 ∈ D(y), otherwise y − d1 ≺ y, y − d2 ≺ y and Assumption 3 (ii) implies that also
y − (d1 + d2) ≺ y and, thus d1 + d2 ∈ D(y), showing that the cone D(y) is convex.

To show that D(y) contains the Pareto cone, repeat the proof of Proposition 2. ��
Proposition 3 shows that the domination structure for a preference model that satisfies

Assumptions 2 and 3 is described by a collection of convex cones that contain the Pareto
cone. The final assumption is motivated by another example that also prepares the subsequent
notion of ideal-symmetric cones.

Example 2 Let Y ⊂ R
2 and y1, y2, y3, y4 ∈ Y with y1 + y4 = y2 + y3 be as depicted in

Fig. 1. Restricting consideration to these four outcomes, y1, y2, and y3 are nondominated
with respect to the Pareto cone, while y4 is dominated by y1. In particular, y4 is neither dom-
inated by nor preferred to y2 and y3. Although arguable, in principle, it seems reasonable
that in a practical decision making context, y1 would be preferred to y2 and y3 and, thus,
be the overall best outcome. Hence, the underlying preference model should give that y1 is
preferred to all the three other outcomes, but it should not introduce any additional prefer-
ence relationships between y2, y3 and y4. Using a constant convex cone D ⊂ R

2, however,
y1 ≺ y2 and y1 ≺ y3 are equivalent with y2 − y1 and y3 − y1 ∈ D and, thus, also imply that
y4 − y2 = y3 − y1 and y4 − y3 = y2 − y1 ∈ D, or y2 ≺ y4 and y3 ≺ y4, respectively. In
particular, it is not possible to define a preference model that allows to individually specify
one or both of the preference relationships y1 ≺ y2 and y1 ≺ y3 between y1, y2, and y3,
without affecting the preference relationships y2

⊀ y4 and y3
⊀ y4 between y2, y3 and y4.

To remove the model limitations illustrated by Examples 1 and 2, this paper suggests to
define a new model that allows for variable preferences and, thus, can be described by a
variable domination structure D = {D(y) : y ∈ Y }. Variability of D is introduced by the
assumption that the set of preferred directions at any y ∈ Y is symmetric with respect to the
direction leading to the ideal point z ∈ R

2, and Fig. 1 provides insight into how this assump-
tion is capable to model preference relationships similar to the ones discussed in Example 2.
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Fig. 1 Illustration of Example 2 (on the left) and Assumption 4 (on the right)

Equivalently, then D(y) is symmetric with respect to ȳ = y − z ≥ 0, and the corresponding
notion of ideal-symmetry is introduced in the following assumption.

Assumption 4 (Ideal-symmetry) Let Y ⊂ R
m be nonempty, y ∈ Y , and denote ȳ = y − z. If

d, d ′ ∈ R
m with 〈d, ȳ〉 = 〈d ′, ȳ〉 and ‖d‖ = ‖d ′‖, then y − d ≺ y if and only if y − d ′ ≺ y.

Remark 7 In particular, if d 
= 0, 〈d, ȳ〉 = 〈d ′, ȳ〉, and ‖d‖ = ‖d ′‖, then 〈d, ȳ〉‖d‖−1‖ȳ‖−1

= 〈d ′, ȳ〉‖d ′‖−1‖ȳ‖−1. For the bicriteria or tricriteria case, m = 2 or m = 3, results from
analytical geometry give that cos �(d, ȳ) = cos �(d ′, ȳ), or �(d, ȳ) = �(d ′, ȳ), as depicted
in Fig. 1. For m > 3, Assumption 4 gives the natural generalization.

Based on the notion of ideal-symmetry in Assumption 4, the following lemma calls a cone
C ⊂ R

m symmetric with respect to s ∈ R
m≥, s 
= 0, if c ∈ C implies that c′ ∈ C for all c′ ∈ R

m

with 〈c, s〉 = 〈c′, s〉 and ‖c‖ = ‖c′‖. For further convenience, although ambivalent to Fig. 1,
now the parameter γ is used to denote the cosine of any corresponding angle γ1, γ2, γ3.

Lemma 1 Let γ ∈ R, s ∈ R
m≥, s 
= 0, and define

Cγ,s =
{

c ∈ R
m \ {0} : 〈c, s〉

‖c‖‖s‖ ≥ γ

}

∪ {0}

Then Cγ,s is a cone that is symmetric with respect to s.

(i) If γ ≥ 0, then Cγ,s is convex.
(ii) If γ > 0, then Cγ,s is convex and pointed.

(iii) If γ ≤ mini {si }‖s‖−1, then Cγ,s contains the Pareto cone.

Proof To show that Cγ,s is a cone, let c ∈ Cγ,s and λ > 0. If c = 0, then λc = 0 ∈ Cγ,s ,
otherwise

〈λc, s〉
‖λc‖‖s‖ = λ〈c, s〉

λ‖c‖‖s‖ = 〈c, s〉
‖c‖‖s‖ ≥ γ

and, thus, λc ∈ Cγ,s , showing that Cγ,s is a cone. To show that the cone Cγ,s is symmetric
with respect to s, let c ∈ Cγ,s and c′ ∈ R

m with 〈c, s〉 = 〈c′, s〉 and ‖c‖ = ‖c′‖. If c = 0,
then c′ = 0 ∈ Cγ,s , otherwise

〈c′, s〉
‖c′‖‖s‖ = 〈c, s〉

‖c‖‖s‖ ≥ γ

and, thus, c′ ∈ Cγ,s , showing the the cone Cγ,s is symmetric with respect to s.
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(i) Let γ ≥ 0. To show that the cone Cγ,s is convex, let c1, c2 ∈ Cγ,s . If c1 = c2 = 0,
then c1 + c2 = 0 ∈ Cγ,s , otherwise

〈c1 + c2, s〉
‖c1 + c2‖‖s‖ ≥ 〈c1, s〉 + 〈c2, s〉

(‖c1‖ + ‖c2‖)‖s‖ ≥ γ ‖c1‖ + γ ‖c2‖
(‖c1‖ + ‖c2‖) = γ

and, thus, c1 + c2 ∈ Cγ,s , showing that the cone Cγ,s is convex.
(ii) Let γ > 0, then γ ≥ 0 and the cone Cγ,s is convex. To show that the convex cone

Cγ,s is pointed, let c ∈ Cγ,s \ {0}, then

〈−c, s〉
‖−c‖‖s‖ = − 〈c, s〉

‖c‖‖s‖ ≤ −γ < γ

and, thus, −c /∈ Cγ,s , c /∈ −Cγ,s , or Cγ,s ∩ −Cγ,s ⊂ {0}, showing that the convex
cone Cγ,s is pointed.

(iii) Let γ ≤ mini {si }‖s‖−1. To show that the cone Cγ,s contains the Pareto cone, let
c = ∑m

i=1 ci ei = (c1, . . . , cm) ≥ 0. If c = 0, then c ∈ Cγ,s , otherwise

〈c, s〉
‖c‖‖s‖ = 〈∑m

i=1 ci ei , s〉
‖∑m

i=1 ci ei‖‖s‖ ≥
∑m

i=1 ci 〈ei , s〉
∑m

i=1 ci‖ei‖‖s‖ =
∑m

i=1 ci si
∑m

i=1 ci‖s‖ ≥ mini {si }
‖s‖ ≥ γ

and, thus, c ∈ Cγ,s , showing that the cone Cγ,s contains the Pareto cone. ��
Remark 8 For γ > 0, the cone Cγ,s defined in Lemma 1 belongs to the general class of
pointed convex cones known as Bishop-Phelps cones, that also have many other applications
in nonlinear analysis and multicriteria optimization (Hyers et al. 1997).

Notation 2 Throughout the remaining paper, the notation ȳmin = mini {ȳi } is used to denote
the minimal component of ȳ = y − z for any y ∈ Y .

From Definition 4, it then follows that ȳmin > 0 if and only if y is not partially ideal. The
concluding result now follows immediately from Lemma 1 and Proposition 3.

Proposition 4 Let Y ⊂ R
m be nonempty. Assumptions 2, 3 and 4 imply that the domination

structure of Y is variable and can be described by a collection of ideal-symmetric convex
cones that contain the Pareto cone. Moreover, for any outcome y ∈ Y , the corresponding
domination cone can be modeled by

Dγ (y) = {d ∈ R
m : 〈d, ȳ〉 ≥ γ ‖d‖ȳmin}

where ȳ = y − z, ȳmin = mini {ȳi }, and 0 ≤ γ ≤ 1. In particular, the cone Dγ (y) is pointed
if and only if y is not partially ideal and γ > 0.

For the definition of Dγ (y) in Proposition 4, ȳ replaces s in Lemma 1, and the parameter
γ is chosen to replace the term γ ‖s‖ with 0 ≤ γ ≤ smin‖s‖−1 by γ · ȳmin with 0 ≤ γ ≤ 1.

Remark 9 A specific γ ∈ [0, 1] for Dγ (y) can be chosen arbitrarily and, in general, may
also vary for different outcomes y ∈ Y . Furthermore, it is easy to show that γ1 ≥ γ2 implies
that Dγ1(y) ⊂ Dγ2(y).

Although the domination structure D = {Dγ (y) : y ∈ Y } is fully determined once the
parameters γ are fixed, the possible choices of γ provide an additional means of varying the
individual domination cones Dγ (y) and, thus, the overall domination and preference model
imposed for solving MCO.
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4 Characterization of the nondominated set

A great variety of multiobjective programming methods exist for generating nondominated
outcomes for MCO when the domination structure is induced by a constant convex cone
or, more often, the Pareto cone (Ehrgott and Wiecek 2005). This section discusses possible
extensions of some of these methods for the characterization of the nondominated set with
respect to a variable domination structure and, at the same time, derives some more specific
results for the domination structure derived in Proposition 4. To begin, consider the single
criterion optimization problem

SCO1: Minimize 〈n, y〉 subject to y ∈ Y

which corresponds to the weighted sum generating method from multiobjective program-
ming (Gass and Saaty 1955; Zadeh 1963; Geoffrion 1968) with weighting vector n ∈ R

m .
The following result is an immediate generalization of a similar statement for a constant
convex cone D ⊂ R

m (see Sawaragi et al. 1985, among others), while its proof does not
require the assumption of convexity.

Proposition 5 Let Y ⊂ R
m be nonempty, and D = {D(y) : y ∈ Y } be a domination

structure.

(i) If y◦ ∈ Y is a unique optimal solution to SCO1 and n ∈ D(y◦)+, then y◦ ∈ N(Y, D).
(ii) If y◦ ∈ Y is an optimal solution to SCO1 and n ∈ int D(y◦)+, then y◦ ∈ N(Y, D).

Proof Let y◦ ∈ Y be an optimal solution to SCO1, so 〈n, y◦〉 ≤ 〈n, y〉 for all y ∈ Y , and,
by contradiction, assume that y◦ /∈ N(Y, D). Then there exists y ∈ (y◦ − D(y◦)) ∩ Y \ {y◦},
or equivalently, y◦ − y = d ∈ D(y◦) \ {0}.
(i) If y◦ is unique and n ∈ D(y◦)+, then 〈n, y◦〉 < 〈n, y〉 for all y ∈ Y \ {y◦} and

〈n, d〉 ≥ 0 for all d ∈ D(y◦). In particular, it follows that 0 ≤ 〈n, d〉 = 〈n, y◦ − y〉 < 0
a contradiction, so y◦ ∈ N(Y, D).

(ii) If n ∈ int D(y◦)+, then 〈n, d〉 > 0 for all d ∈ D(y◦) \ {0} and, thus, 0 < 〈n, d〉 =
〈n, y◦ − y〉 ≤ 0 a contradiction, so y◦ ∈ N(Y, D). ��

When using problem SCO1 to find nondominated outcomes for MCO, it is clear that the
weighting vector n ∈ R

m must be chosen before a corresponding solution y◦ ∈ Y can be
obtained. Hence, while it is always possible to choose n ∈ int D+ for a constant cone D ⊂ R

m

to guarantee that solutions to SCO1 are also nondominated for MCO, in general, this is not
possible for a variable domination structure for which the conditions n ∈ int D(y◦)+ or
n ∈ D(y◦)+ can only be checked a posteriori.

Remark 10 One particular approach to verify if the conditions n ∈ int D(y◦)+ or n ∈
D(y◦)+ are satisfied is to solve the single criterion mathematical cone program (for details,
see Alizadeh and Goldfarb 2003)

Minimize〈n, d〉 subject to d ∈ D(y◦) \ {0}
so that n ∈ int D(y◦)+ or n ∈ D(y◦)+ if and only if the optimal objective function value is
positive or nonnegative, respectively.

For the domination structure defined in Proposition 4, the following corollary to Proposi-
tion 5 is possible.
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Corollary 1 Let Y ⊂ R
m be nonempty, D = {Dγ (y) : y ∈ Y } be defined by Dγ (y) = {d ∈

R
m : 〈d, ȳ〉 ≥ γ ‖d‖ȳmin} with ȳ = y − z, ȳmin = mini {ȳi }, and 0 < γ ≤ 1 for all y ∈ Y ,

and ȳ◦ = y◦ − z ∈ R
m be the weighting vector for problem SCO1.

(i) If y◦ ∈ Y is a unique optimal solution to SCO1, then y◦ ∈ N(Y, D).
(ii) If y◦ ∈ Y is an optimal solution to SCO1 and not partially ideal, then y◦ ∈ N(Y, D).

Proof Let ȳ◦ ∈ R
m be the weighting vector and y◦ ∈ Y be an optimal solution to SCO1.

Since, by definition, 〈d, ȳ◦〉 ≥ γ ‖d‖ȳ◦
min ≥ 0 for all d ∈ Dγ (y◦), this shows that ȳ◦ ∈

Dγ (y◦)+. Moreover, if y◦ is not partially ideal, then ȳ◦
min > 0 and, thus, 〈d, y◦〉 ≥ γ ‖d‖ȳ◦

min
> 0 for all d ∈ Dγ (y◦) \ {0}, showing that ȳ◦ ∈ int Dγ (y◦)+. The proof now follows from
Proposition 5. ��

Hence, to verify if an outcome y◦ ∈ Y is nondominated with respect to D as given in
Proposition 4 and Corollary 1, SCO1 can be solved with weighting vector n = ȳ◦ and, if
y◦ is a unique optimal solution, or if y◦ is an optimal solution and not partially ideal, then
y◦ ∈ N(Y, D). In general, however, these conditions are only sufficient, but not necessary. In
particular, it is well known that problem SCO1 can only generate nondominated outcomes
that occur in convex regions of the nondominated frontier. By the slight modification of intro-
ducing an additional reference point r ∈ Y (Wendell and Lee 1977; Corley 1980; Guddat
et al. 1985), however, the formulation

SCO2: Minimize 〈n, y〉 subject to r − y ∈ D(y◦) and y ∈ Y

provides both sufficient and necessary conditions for a nondominated solution y◦ ∈ Y with
respect to a general variable domination structure.

Proposition 6 Let Y ⊂ R
m be nonempty, and D = {D(y) : y ∈ Y } be a domination

structure where each D(y) ⊂ R
m is a convex cone.

(i) If y◦ ∈ Y is a unique optimal solution to SCO2 and n ∈ D(y◦)+, then y◦ ∈ N(Y, D).
(ii) If y◦ ∈ Y is an optimal solution to SCO2 and n ∈ int D(y◦)+, then y◦ ∈ N(Y, D).

(iii) If y◦ ∈ N(Y, D), then y◦ ∈ Y is a unique optimal solution to SCO2 with r = y◦.

Proof For (i) and (ii), the proof follows as in Proposition 5, where the contradicting solution
y ∈ Y is feasible for SCO2 because r − y = r − y◦ + d ∈ D(y◦) by feasibility of y◦ for
SCO2 and convexity of the cone D(y◦). For (iii), let y◦ ∈ N(Y, D) also be the reference
point for SCO2, then there does not exist y ∈ Y \ {y◦} such that y◦ − y ∈ D(y◦) and, thus,
y◦ is the unique solution to SCO2. ��

Since the necessary condition in Proposition 6 (iii) is independent of the chosen weighting
vector n ∈ R

m , the following corollary follows analogously to Corollary 1.

Corollary 2 Let Y ⊂ R
m be nonempty, D = {Dγ (y) : y ∈ Y } be defined by Dγ (y) = {d ∈

R
m : 〈d, ȳ〉 ≥ γ ‖d‖ȳmin} with ȳ = y − z, ȳmin = mini {ȳi }, and 0 < γ ≤ 1 for all y ∈ Y ,

and ȳ◦ = y◦ − z ∈ R
m be the weighting vector for problem SCO2.

(i) If y◦ ∈ Y is a unique optimal solution to SCO2, then y◦ ∈ N(Y, D).
(ii) If y◦ ∈ Y is an optimal solution to SCO2 and not partially ideal, then y◦ ∈ N(Y, D).

(iii) In addition, let r = y◦ be the reference point for SCO2. Then y◦ ∈ N(Y, D) if and
only if y◦ is a unique optimal solution to SCO2.
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Hence, problem SCO2 can be used to verify if any outcome y ∈ Y is nondominated with
respect to the variable domination structure D as given in Proposition 4 and Corollary 2. To
restrict the initial set of points that would actually need to be checked, the next results show
that all these nondominated outcomes can be found within the Pareto set.

Proposition 7 Let Y ⊂ R
m be nonempty, and D1 = {D1(y) : y ∈ Y } and D2 = {D2(y) :

y ∈ Y } be two domination structures with D2(y) ⊂ D1(y) for all y ∈ Y . Then N(Y, D1) ⊂
N(Y, D2).

The proof of Proposition 7 is immediate (Sawaragi et al. 1985). In particular, since R
m≥ ⊂

Dγ (y) for all y ∈ Y by Proposition 4, the following corollary also applies to D = {Dγ (y) :
y ∈ Y }.
Corollary 3 Let Y ⊂ R

m be nonempty, and D = {D(y) : y ∈ Y } be a domination structure
where R

m≥ ⊂ D(y) for all y ∈ Y . Then N(Y, D) ⊂ N(Y, R
m≥).

Hence, to solve the multicriteria optimization problem MCO under a preference model
given by Assumptions 2, 3 and 4, the previous discussion suggests to first find the Pareto
set and then check which Pareto points remain nondominated with respect to the variable
domination structure D introduced in Proposition 4. While the latter, in principle, can be
accomplished using condition (iii) in Corollary 2, alternative optimality conditions can be
derived for the special cases of convex or concave bicriteria problems using arguments from
analytic geometry. The first is based on the following application of the supporting hyperplane
theorem (Rockafellar 1970).

Lemma 2 Let Y ⊂ R
m be R

m≥-convex and y◦ ∈ N(Y, R
m≥). Then there exists a supporting

hyperplane of Y at y◦ with normal vector n ∈ R
m, n 
= 0, so that 〈n, y − y◦〉 ≥ 0 for all

y ∈ Y .

Theorem 1 Let Y ⊂ R
2 be nonempty, and D = {Dγ (y) : y ∈ Y } be defined by Dγ (y) =

{d ∈ R
2 : 〈d, ȳ〉 ≥ γ ‖d‖ȳmin} with ȳ = y − z, ȳmin = mini {ȳi }, and 0 < γ ≤ 1 for all

y ∈ Y . Assume that N(Y, R
2≥) is R

2≥-convex, let y◦ ∈ N(Y, R
2≥), and n ∈ R

m, n 
= 0, be the
normal vector of a supporting hyperplane at y◦ with 〈n, y − y◦〉 ≥ 0 for all y ∈ Y .

(i) If 〈n, ȳ◦〉2 + γ 2‖n‖2 ȳ◦2
min > ‖n‖2‖ȳ◦‖2, then y◦ ∈ N(Y, D).

Furthermore, let n satisfy that 〈n, y − y◦〉 > 0 for all y ∈ Y\{y◦}.
(ii) If 〈n, ȳ◦〉2 + γ 2‖n‖2 ȳ◦2

min ≥ ‖n‖2‖ȳ◦‖2, then y◦ ∈ N(Y, D).

Proof Let N(Y, R
2≥) be R

2≥-convex, and let y◦ ∈ N(Y, R
2≥). As shown in Fig. 2, let η =

�(n, ȳ◦) be the positive angle between n and ȳ◦, so

0 ≤ cos η = cos �(n, ȳ◦) = 〈n, ȳ◦〉
‖n‖‖ȳ◦‖ ≤ 1

and 0 ≤ sin η ≤ 1. Let δ = max{�(d, ȳ◦) : d ∈ Dγ (y◦)\{0}} be the maximal positive angle
between any d ∈ Dγ (y◦)\{0} and ȳ◦, so

0 ≤ cos δ = min

{ 〈d, ȳ◦〉
‖d‖‖ȳ◦‖ : 〈d, ȳ◦〉 ≥ γ ‖d‖ȳ◦

min, d 
= 0

}

= γ ‖d‖ȳ◦
min

‖d‖‖ȳ◦‖ = γ ȳ◦
min

‖ȳ◦‖ ≤ 1

and 0 ≤ sin δ ≤ 1. Finally, let µ = max {�(n, d) : d ∈ Dγ (y◦)\{0}} be the maximal positive
angle between n and any d ∈ Dγ (y◦)\{0} at y, so µ = η + δ and

cos µ = min

{ 〈n, d〉
‖n‖‖d‖ : d ∈ Dγ (y◦)\{0}

}
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Fig. 2 Illustration of Theorem 1 (convex case, on the left) and Theorem 2 (concave case, on the right)

(i) Since the assumption 〈n, ȳ◦〉2 + γ 2‖n‖2 ȳ◦2
min > ‖n‖2‖ȳ◦‖2 is equivalent to

〈n, ȳ◦〉2

‖n‖2‖ȳ◦‖2 + γ 2 ȳ◦2
min

‖ȳ◦‖2 = cos2 η + cos2 δ > 1

it follows that cos2 η > 1−cos2 δ = sin2 δ and cos2 δ > 1−cos2 η = sin2 η. In particu-
lar, this implies that cos η > sin δ and cos δ > sin η and, thus, cos η cos δ − sin η sin δ =
cos(η + δ) = cos µ > 0. Equivalence follows from repeating the same argument with
< instead of >. Then, by definition of µ, it is shown that 〈n, ȳ◦〉2 + γ 2‖n‖2 ȳ◦2

min >

‖n‖2‖ȳ◦‖2 is equivalent to

cos µ = min

{ 〈n, d〉
‖n‖‖d‖ : d ∈ Dγ (y◦)\{0}

}

> 0

or equivalently, 〈n, d〉‖n‖−1‖d‖−1 > 0 and, thus, 〈n, d〉 > 0 for all d ∈ Dγ (y◦)\{0}.
Since, by assumption, 〈n, y − y◦〉 ≥ 0 for all y ∈ Y , or 〈n, y◦ − y〉 ≤ 0, it follows that
y◦ − y /∈ Dγ (y◦)\{0}, showing that y◦ ∈ N(Y, D).

(ii) Furthermore, if 〈n, y − y◦〉 > 0 for all y ∈ Y\{y◦}, or 〈n, y◦ − y〉 < 0, the same con-
clusion already follows for 〈n, d〉 ≥ 0 for all d ∈ Dγ (y◦), or 〈n, ȳ◦〉2 + γ 2‖n‖2 ȳ◦2

min ≥
‖n‖2‖ȳ◦‖2. ��

Remark 11 The proof of Theorem 1 readily extends to the tricriteria case, as the interpreta-
tion of angles remains valid and, in particular, preserves the same geometric meaning as in
the bicriteria case. For m > 3, however, the proof loses its geometric character and, thus, the
theorem might not hold anymore.

A similar result can be established in the concave bicriteria case for the particular choice
Dγ (y) = D1(y) and under the additional assumption that Y is R

2≥-compact. In particular,
by Remark 5, then the ideal point z = {z1, z2} ∈ R

2 can be defined using the minimum,
zi = min{yi : y ∈ Y } for i = 1, 2.

Theorem 2 Let Y ⊂ R
2 be nonempty, and D = {D(y) : y ∈ Y } be defined by D(y) = {d ∈

R
2 : 〈d, ȳ〉 ≥ ‖d‖ȳmin} with ȳ = y − z and ȳmin = mini {ȳi } for all y ∈ Y . Assume that Y

is R
2≥-compact and N(Y, R

2≥) is R
2≥-concave, let y◦ ∈ N(Y, R

2≥), and j ∈ {1, 2} be so that
ȳ◦

j = ȳ◦
min. Denote z1 = (z1

1, z2) and z2 = (z1, z2
2), where z1

1 = min{y1 : y2 = z2, y ∈ Y },
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z2
2 = min{y2 : y1 = z1, y ∈ Y }, and z = (z1, z2) ∈ R

2 is the ideal point of Y . Then
y◦ ∈ N(Y, D) if and only if y◦ − z j /∈ D(y◦).

Proof Let Y be R
2≥-compact. Since z1 and z2 are the two optimal lexicographic solutions

to the bicriteria problem N(Y, R
2≥), it follows that z1, z2 ∈ N(Y, R

2≥), and z1 
= z2 as the
ideal point z /∈ Y . Moreover, z̄1 = (z1

1 − z1, 0) ≥ 0 implies that D(z1) = {d = (d1, d2) ∈
R

2 : d1 ≥ 0} and, thus, z2 ∈ (z1 − D(z1)) ∩ Y\{z1}. This shows that z1 /∈ N(Y, D) and, by
repeating the analogous argument for z2, that z2 /∈ N(Y, D). Now let N(Y, R

2≥) be R
2≥-con-

cave and y◦ ∈ N(Y, R
2≥)\{z1, z2}, so, in particular, z1 < y◦

1 < z1
1 and z2 < y◦

2 < z2
2. By

R
2≥-concavity, then there does not exist y ∈ Y that falls below the two line segments from

y◦ to z1 and z2, as indicated in Fig. 2. In particular, if y◦ − z1, y◦ − z2 /∈ D(y◦), then there
does not exist y ∈ (y◦ − D(y◦)) ∩ Y\{y◦}, showing that y◦ ∈ N(Y, D). Without loss of
generality, let ȳ◦

min = ȳ◦
1 ≤ ȳ◦

2 , then, by assumption, y◦ − z1 /∈ D(y◦), and it only remains
to show that y◦ − z2 /∈ D(y◦). But this follows, because

〈y◦ − z2, ȳ◦〉 − ‖y◦ − z2‖ȳ◦
1 = ȳ◦2

1 + (y◦
2 − z2

2)ȳ◦
2 − ‖y◦ − z2‖ȳ◦

1

≤ (y◦
2 − z2

2)(y◦
2 − z2) < 0

from z2 < y◦
2 < z2

2. The reverse direction is clear and follows because z1, z2 ∈ Y . ��
The point (z1

1, z2
2) ∈ R

2 in Theorem 2 is also called the nadir point. More general, for a
set Y ⊂ R

m , the nadir point is defined by znad = {znad
1 , . . . , znad

m }, where znad
i = sup{yi :

y ∈ N(Y, R
m≥)}.

Remark 12 The proof of Theorem 2 only holds for the bicriteria case m = 2, based on the
exploited characterization of the nadir point using the two optimal lexicographic solutions
for N(Y, R

2≥). For m > 2, however, the nadir point must be found through optimization over
the Pareto set and, therefore, in general is not readily available (Yamamoto 2002; Ehrgott
and Tenfelde-Podehl 2003).

5 Examples

The two theorems in Sect. 4 are illustrated for the three sets depicted in Fig. 3. Each set
Y ⊂ R

2 has the ideal point z = (0, 0) ∈ R
2 at the origin, so ȳ = y for all y ∈ Y . In

particular, to apply both Theorem 1 and 2, the domination structure D = {D(y) : y ∈ Y } be
defined by D(y) = {d ∈ R

2 : 〈d, y〉 ≥ ‖d‖ymin} for all y ∈ Y .

Example 3 Let Y = {y ∈ R
2 : (1 − y1)

2 + (1 − y2)
2 ≤ 1}. Then N(Y, R

2≥) = {y ∈
Y : (1 − y1)

2 + (1 − y2)
2 = 1, y1 ≤ 1, y2 ≤ 1} is R

2≥-convex, and Theorem 1 can
be used to find N(Y, D). Hence, let y ∈ N(Y, R

2≥), so (1 − y1)
2 + (1 − y2)

2 = 1 and
0 ≤ y1, y2 ≤ 1 (∗), and, without loss of generality, assume that ymin = y1 ≤ y2, so

Fig. 3 Illustration of Example 3 (convex case), Example 4 (concave case) and Example 5 (linear case)
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0 ≤ y1 ≤ 1 − 1
2

√
2 or 1 − y1 ≥ 1

2

√
2 > 0. Since the supporting hyperplane at y has the

normal vector n = (1 − y1, 1 − y2) ∈ R
2 that satisfies ‖n‖2 = 1 and 〈n, y − y′〉 > 0 for all

y′ ∈ Y\{y}, the condition in Theorem 1 becomes

〈n, y〉2 + ‖n‖2 y2
min − ‖n‖2‖y‖2 = [(1 − y1)y1 + (1 − y2)y2]2 + y2

1 − (y2
1 + y2

2 ) ≥ 0

and using (∗) to solve this inequality yields that 1
5 ≤ y1 ≤ y2 ≤ 2

5 and, by symmetry of Y in
y1 and y2,

N(Y, D) = {
y ∈ Y : (1 − y1)

2 + (1 − y2)
2 = 1, 1

5 ≤ y1, y2 ≤ 2
5

}

If the set Y is R
2≥-concave instead of R

2≥-convex, Theorem 2 has to be used instead of
Theorem 1.

Example 4 Let Y = {y ∈ R
2 : y2

1 + y2
2 ≥ 1, y1 ≥ 0, y2 ≥ 0}. Then N(Y, R

2≥) = {y ∈
Y : y2

1 + y2
2 = 1} is R

2≥-concave, and Theorem 2 can be used to find N(Y, D). Hence, let
y ∈ N(Y, R

2≥), so y2
1 + y2

2 = 1 and 0 ≤ y1, y2 ≤ 1 (†), and, without loss of generality,

assume that ymin = y1 ≤ y2, so 0 ≤ y1 ≤ 1
2

√
2 or 1 − y1 ≥ 1 − 1

2

√
2. Since z1 = (1, 0)

and z2 = (0, 1), the condition in Theorem 2 becomes

〈y − z1, y〉 − ‖y − z1‖y1 = (y1 − 1)y1 + y2
2 −

√
(y1 − 1)2 + y2

2 · y1 > 0

and using (†) to solve this inequality yields 1
2 < y1 ≤ y2 < 1

2

√
3 and, by symmetry of Y in

y1 and y2,

N(Y, D) =
{

y ∈ Y : y2
1 + y2

2 = 1, 1
2 < y1, y2 < 1

2

√
3
}

The concluding Example 5 considers the same set previously defined in Example 1 and
shows how the new variable preference model resolves the limitations highlighted in the
earlier discussion.

Example 5 Let Y = {y ∈ R
2 : y1 + y2 ≥ 1, y1 ≥ 0, y2 ≥ 0}. Then N(Y, R

2≥) = {y ∈
Y : y1 + y2 = 1} is both R

2≥-convex and R
2≥-concave, and both Theorems 1 and 2 can be

used to find N(Y, D). Hence, let y ∈ N(Y, R
2≥), so y1 + y2 = 1 and 0 ≤ y1, y2 ≤ 1 (‡), and,

without loss of generality, assume that ymin = y1 ≤ y2, so 0 ≤ ymin = y1 ≤ 1
2 ≤ y2. Since

the supporting hyperplane at y has the normal vector n = (1, 1) that satisfies 〈n, y − y′〉 ≥ 0
for all y′ ∈ Y , the condition in Theorem 1 becomes

〈n, y〉2 + ‖n‖2 y2
min − ‖n‖2‖y‖2 = (y1 + y2)

2 + 2y2
1 − 2(y2

1 + y2
2 ) = 1 − 2y2

2 > 0

and using (‡) to solve this inequality yields 1 − 1
2

√
2 < y1 ≤ y2 < 1

2

√
2 and, by symmetry

of Y in y1 and y2,

N(Y, D) =
{

y ∈ Y : y1 + y2 = 1, 1 − 1
2

√
2 < y1, y2 < 1

2

√
2
}

Alternatively, with z1 = (1, 0) and z2 = (0, 1), the condition in Theorem 2 becomes

〈y − z1, y〉 − ‖y − z1‖y1 = (y1 − 1)y1 + y2
2 −

√
(y1 − 1)2 + y2

2 · y1 > 0,

and solving this inequality yields the same set as Theorem 1.
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In particular, the new variable preference model excludes parts of the Pareto frontier
while maintaining a set of nondominated outcomes in the middle region for presentation to
and further consideration by a decision maker. Furthermore, by adjusting the parameter γ

in the definition of Dγ (y) in Proposition 4 to values less than 1, Remark 9 together with
Proposition 7 implies that the nondominated set can be further reduced to also take more spe-
cific preferences of the decision maker into account. Investigation of this and other related
aspects are planned as future research and, together with some final remarks, outlined in the
following concluding section.

6 Conclusion

This paper presents an approach to variable preference modeling for multicriteria optimiza-
tion and decision making problems, based on the concept of general domination structures.
The relevant literature indicates that the majority of such preference models is described by
constant convex or polyhedral cones, and it is first shown how these models are valid under
the assumptions of global multiplicativity and additivity and subsume Pareto dominance as a
special case. Two examples then illustrate some undesirable restrictions of preference models
that are described by constant convex cones and, in remedy of the recognized model limi-
tations, motivate the formulation of a new set of preference assumptions. In particular, the
previous assumption of global preferences is replaced by its local counterpart, and the new
assumption of ideal-symmetry is introduced to steer variability of the associated domination
structure.

To characterize the nondominated set with respect to this variable domination structure,
two associated single criterion optimization problems are formulated and used to derive both
necessary and sufficient conditions for the corresponding nondominated solutions of a gen-
eral and, more specifically, the particular preference model developed in this paper. Using
results from analytic geometry and relying on the geometrical character of the ideal-symmetry
assumption, two further conditions are established for the bicriteria case and subsequently
used to illustrate the new preference model on three examples. In particular, it is thereby
shown how the new variable cone model resolves the previously recognized shortcomings
of constant cones and, in general, finds a subset of Pareto outcomes that are located in the
middle region of the original Pareto frontier.

Several further research questions are motivated by this paper. First, other conditions for
nondominance can be derived in generalization of the results for the convex and concave
bicriteria case established in this paper, preferably independent of a restricting geometrical
character. Second, the assumption of ideal-symmetry gives the possibility to describe the
variable domination structure by different collections of ideal-symmetric convex cones, and
the characterization of the corresponding nondominated sets, especially in comparison to the
results obtained here, can be further examined. Third, different sets of preference assump-
tions can be proposed to obtain variable domination structures other than the one derived in
this paper, eventually producing a variety of new approaches to variable preference modeling
in multicriteria optimization and decision making.
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